BODMAS Questions for Class 10

BODMAS is a basic rule in mathematics that helps solve equations with multiple operations in the correct order. It stands for:

  • B - Brackets (solve brackets first)
  • O - Order (powers or roots)
  • D - Division
  • M - Multiplication
  • A - Addition
  • S - Subtraction

By following this order, you can ensure the accuracy of your calculations.

Also Check: How to Make Parents Proud and Happy?

Why Is BODMAS Important?

  1. Correct Order: It helps solve problems step by step without confusion.
  2. Avoid Errors: Ensures no mistakes when dealing with multiple operations.
  3. Improves Accuracy: Makes solving complex problems easier and faster.

Tips to Solve BODMAS Questions

  1. Start with Brackets: Solve all the terms inside the brackets first.
  2. Focus on Powers/Roots: After brackets, handle powers or roots, if any.
  3. Perform Division and Multiplication: Work from left to right for these operations.
  4. Finish with Addition and Subtraction: Solve these last, also moving from left to right.

Examples of BODMAS Questions for Class 10

1. Simple Problem

Solve: 6+(4×2)6 + (4 \times 2)6+(4×2)
Solution:

  • Brackets: 4×2=84 \times 2 = 84×2=8
  • Addition: 6+8=146 + 8 = 146+8=14
    Answer: 14

2. Problem with Multiple Brackets

Solve: 12−[3+(2×5)]12 - [3 + (2 \times 5)]12−[3+(2×5)]
Solution:

  • Inside Brackets: 2×5=102 \times 5 = 102×5=10
  • Solve Square Brackets: 3+10=133 + 10 = 133+10=13
  • Subtraction: 12−13=−112 - 13 = -112−13=−1
    Answer: -1

3. Problem with Division and Multiplication

Solve: 18÷3×2+518 \div 3 \times 2 + 518÷3×2+5
Solution:

  • Division: 18÷3=618 \div 3 = 618÷3=6
  • Multiplication: 6×2=126 \times 2 = 126×2=12
  • Addition: 12+5=1712 + 5 = 1712+5=17
    Answer: 17

4. Problem with Powers

Solve: (32+23)÷5(3^2 + 2^3) \div 5(32+23)÷5
Solution:

  • Powers: 32=93^2 = 932=9, 23=82^3 = 823=8
  • Inside Brackets: 9+8=179 + 8 = 179+8=17
  • Division: 17÷5=3.417 \div 5 = 3.417÷5=3.4
    Answer: 3.4

Practice Questions for Class 10

hese questions range from simple to advanced, covering brackets, powers, and multiple operations.

Simple BODMAS Questions

  1. 10+4×5−810 + 4 \times 5 - 810+4×5−8
  2. 6×(7−3)+26 \times (7 - 3) + 26×(7−3)+2
  3. 15−[8÷2+3]15 - [8 \div 2 + 3]15−[8÷2+3]
  4. 20÷4+6×220 \div 4 + 6 \times 220÷4+6×2
  5. 18+(5−3)×418 + (5 - 3) \times 418+(5−3)×4

Intermediate BODMAS Questions

  1. 12+6÷2−3×212 + 6 \div 2 - 3 \times 212+6÷2−3×2
  2. (25−5)÷5+8(25 - 5) \div 5 + 8(25−5)÷5+8
  3. 16÷4+[9×(2+3)]16 \div 4 + [9 \times (2 + 3)]16÷4+[9×(2+3)]
  4. 50−[20÷(2+3)]×450 - [20 \div (2 + 3)] \times 450−[20÷(2+3)]×4
  5. 8+(7×2−4)÷38 + (7 \times 2 - 4) \div 38+(7×2−4)÷3

Advanced BODMAS Questions

  1. [32+23]÷4+6[3^2 + 2^3] \div 4 + 6[32+23]÷4+6
  2. (8×5)−[12÷(4+2)](8 \times 5) - [12 \div (4 + 2)](8×5)−[12÷(4+2)]
  3. 40÷[10−(2+3)]+840 \div [10 - (2 + 3)] + 840÷[10−(2+3)]+8
  4. (23+52)−[3×(4+6)](2^3 + 5^2) - [3 \times (4 + 6)](23+52)−[3×(4+6)]
  5. 10+[6×(32−42)]÷210 + [6 \times (3^2 - 4^2)] \div 210+[6×(32−42)]÷2

Real-Life Application Questions

  1. A store sells 3 items for $20 each and gives a discount of $10. What is the total price?
    Expression: 3×20−103 \times 20 - 103×20−10

  2. A factory produces 50 units daily. If each unit costs $30 and the total cost is reduced by $500, find the final cost.
    Expression: (50×30)−500(50 \times 30) - 500(50×30)−500

  3. A car travels 240 km at 60 km/h. How long will the trip take in hours?
    Expression: 240÷60240 \div 60240÷60

  4. A student scored 8×58 \times 58×5 marks in Math, lost 5 marks for mistakes, and then earned a bonus of 10 marks. What is the final score?
    Expression: 8×5−5+108 \times 5 - 5 + 108×5−5+10

  5. A company earns $400 daily for 5 days, then spends $600 on maintenance. Calculate the net earning.
    Expression: (400×5)−600(400 \times 5) - 600(400×5)−600

Challenge Questions

  1. [(82−42)÷4]+10[(8^2 - 4^2) \div 4] + 10[(82−42)÷4]+10
  2. 100−(25÷5)+3×6100 - (25 \div 5) + 3 \times 6100−(25÷5)+3×6
  3. (3+23)×[10−(3÷3)](3 + 2^3) \times [10 - (3 \div 3)](3+23)×[10−(3÷3)]
  4. [20÷(5+5)]×42−6[20 \div (5 + 5)] \times 4^2 - 6[20÷(5+5)]×42−6
  5. (2×32)+[52−(4+6)]÷2(2 \times 3^2) + [5^2 - (4 + 6)] \div 2(2×32)+[52−(4+6)]÷2

hese questions range from simple to advanced, covering brackets, powers, and multiple operations.

Answers to the BODMAS Questions

Simple BODMAS Questions

  1. 10+4×5−810 + 4 \times 5 - 810+4×5−8
    =10+20−8= 10 + 20 - 8=10+20−8
    =30−8= 30 - 8=30−8
    Answer: 22

  2. 6×(7−3)+26 \times (7 - 3) + 26×(7−3)+2
    =6×4+2= 6 \times 4 + 2=6×4+2
    =24+2= 24 + 2=24+2
    Answer: 26

  3. 15−[8÷2+3]15 - [8 \div 2 + 3]15−[8÷2+3]
    =15−[4+3]= 15 - [4 + 3]=15−[4+3]
    =15−7= 15 - 7=15−7
    Answer: 8

  4. 20÷4+6×220 \div 4 + 6 \times 220÷4+6×2
    =5+6×2= 5 + 6 \times 2=5+6×2
    =5+12= 5 + 12=5+12
    Answer: 17

  5. 18+(5−3)×418 + (5 - 3) \times 418+(5−3)×4
    =18+2×4= 18 + 2 \times 4=18+2×4
    =18+8= 18 + 8=18+8
    Answer: 26

Intermediate BODMAS Questions

  1. 12+6÷2−3×212 + 6 \div 2 - 3 \times 212+6÷2−3×2
    =12+3−6= 12 + 3 - 6=12+3−6
    =15−6= 15 - 6=15−6
    Answer: 9

  2. (25−5)÷5+8(25 - 5) \div 5 + 8(25−5)÷5+8
    =20÷5+8= 20 \div 5 + 8=20÷5+8
    =4+8= 4 + 8=4+8
    Answer: 12

  3. 16÷4+[9×(2+3)]16 \div 4 + [9 \times (2 + 3)]16÷4+[9×(2+3)]
    =4+[9×5]= 4 + [9 \times 5]=4+[9×5]
    =4+45= 4 + 45=4+45
    Answer: 49

  4. 50−[20÷(2+3)]×450 - [20 \div (2 + 3)] \times 450−[20÷(2+3)]×4
    =50−[20÷5]×4= 50 - [20 \div 5] \times 4=50−[20÷5]×4
    =50−4×4= 50 - 4 \times 4=50−4×4
    =50−16= 50 - 16=50−16
    Answer: 34

  5. 8+(7×2−4)÷38 + (7 \times 2 - 4) \div 38+(7×2−4)÷3
    =8+(14−4)÷3= 8 + (14 - 4) \div 3=8+(14−4)÷3
    =8+10÷3= 8 + 10 \div 3=8+10÷3
    =8+3.33= 8 + 3.33=8+3.33
    Answer: 11.33

Advanced BODMAS Questions

  1. [32+23]÷4+6[3^2 + 2^3] \div 4 + 6[32+23]÷4+6
    =[9+8]÷4+6= [9 + 8] \div 4 + 6=[9+8]÷4+6
    =17÷4+6= 17 \div 4 + 6=17÷4+6
    =4.25+6= 4.25 + 6=4.25+6
    Answer: 10.25

  2. (8×5)−[12÷(4+2)](8 \times 5) - [12 \div (4 + 2)](8×5)−[12÷(4+2)]
    =40−[12÷6]= 40 - [12 \div 6]=40−[12÷6]
    =40−2= 40 - 2=40−2
    Answer: 38

  3. 40÷[10−(2+3)]+840 \div [10 - (2 + 3)] + 840÷[10−(2+3)]+8
    =40÷[10−5]+8= 40 \div [10 - 5] + 8=40÷[10−5]+8
    =40÷5+8= 40 \div 5 + 8=40÷5+8
    =8+8= 8 + 8=8+8
    Answer: 16

  4. (23+52)−[3×(4+6)](2^3 + 5^2) - [3 \times (4 + 6)](23+52)−[3×(4+6)]
    =(8+25)−[3×10]= (8 + 25) - [3 \times 10]=(8+25)−[3×10]
    =33−30= 33 - 30=33−30
    Answer: 3

  5. 10+[6×(32−42)]÷210 + [6 \times (3^2 - 4^2)] \div 210+[6×(32−42)]÷2
    =10+[6×(9−16)]÷2= 10 + [6 \times (9 - 16)] \div 2=10+[6×(9−16)]÷2
    =10+[6×−7]÷2= 10 + [6 \times -7] \div 2=10+[6×−7]÷2
    =10+(−42)÷2= 10 + (-42) \div 2=10+(−42)÷2
    =10−21= 10 - 21=10−21
    Answer: -11

Real-Life Application Questions

  1. 3×20−10=60−103 \times 20 - 10 = 60 - 103×20−10=60−10
    Answer: 50

  2. (50×30)−500=1500−500(50 \times 30) - 500 = 1500 - 500(50×30)−500=1500−500
    Answer: 1000

  3. 240÷60=4240 \div 60 = 4240÷60=4
    Answer: 4 hours

  4. 8×5−5+10=40−5+108 \times 5 - 5 + 10 = 40 - 5 + 108×5−5+10=40−5+10
    =45= 45=45
    Answer: 45

  5. (400×5)−600=2000−600(400 \times 5) - 600 = 2000 - 600(400×5)−600=2000−600
    Answer: 1400

Challenge Questions

  1. [(82−42)÷4]+10=[(64−16)÷4]+10=[48÷4]+10=12+10[(8^2 - 4^2) \div 4] + 10 = [(64 - 16) \div 4] + 10 = [48 \div 4] + 10 = 12 + 10[(82−42)÷4]+10=[(64−16)÷4]+10=[48÷4]+10=12+10
    Answer: 22

  2. 100−(25÷5)+3×6=100−5+18=95+18100 - (25 \div 5) + 3 \times 6 = 100 - 5 + 18 = 95 + 18100−(25÷5)+3×6=100−5+18=95+18
    Answer: 113

  3. (3+23)×[10−(3÷3)]=(3+8)×[10−1]=11×9(3 + 2^3) \times [10 - (3 \div 3)] = (3 + 8) \times [10 - 1] = 11 \times 9(3+23)×[10−(3÷3)]=(3+8)×[10−1]=11×9
    Answer: 99

  4. [20÷(5+5)]×42−6=[20÷10]×16−6=2×16−6=32−6[20 \div (5 + 5)] \times 4^2 - 6 = [20 \div 10] \times 16 - 6 = 2 \times 16 - 6 = 32 - 6[20÷(5+5)]×42−6=[20÷10]×16−6=2×16−6=32−6
    Answer: 26

  5. (2×32)+[52−(4+6)]÷2=(2×9)+[25−10]÷2=18+15÷2=18+7.5(2 \times 3^2) + [5^2 - (4 + 6)] \div 2 = (2 \times 9) + [25 - 10] \div 2 = 18 + 15 \div 2 = 18 + 7.5(2×32)+[52−(4+6)]÷2=(2×9)+[25−10]÷2=18+15÷2=18+7.5
    Answer: 25.5

 

Why Practice BODMAS Questions?

  1. Boosts Problem-Solving Skills: These questions improve your logical thinking.
  2. Prepares for Exams: BODMAS is often tested in school and competitive exams.
  3. Builds Confidence: Regular practice helps you tackle math problems confidently.

 

FAQs

BODMAS ensures that mathematical expressions with multiple operations are solved in the correct order, avoiding mistakes and ensuring accurate results.

 

Follow this sequence:

  1. Solve Brackets first (starting with innermost brackets).
  2. Address Orders (powers or square roots).
  3. Perform Division and Multiplication from left to right.
  4. Complete Addition and Subtraction from left to right.

 

BODMAS questions can include:

  • Simple arithmetic expressions.
  • Questions with multiple brackets and operations.
  • Problems involving powers, roots, and fractions.
  • Real-life application problems, such as calculating costs or distances.

 

Yes, BODMAS is used in scenarios like:

  • Calculating total costs with discounts or taxes.
  • Determining time or distance in travel-related problems.
  • Budgeting or financial calculations.

 

  • Solving operations in the wrong order (e.g., doing addition before division).
  • Ignoring or misinterpreting brackets.
  • Skipping steps, leading to calculation errors.
  • Misplacing powers or roots in the order of operations.

 

  • Follow the BODMAS rule strictly, step by step.
  • Double-check each calculation before moving to the next step.
  • Practice regularly to build confidence and accuracy.
  • Write down all steps clearly to track your progress.

 

Yes, BODMAS questions can range from:

  • Basic Level: Simple arithmetic with one or two operations.
  • Intermediate Level: Problems involving multiple brackets, division, and multiplication.
  • Advanced Level: Questions with powers, roots, and complex operations.