Exponential and logarithm series


Exponential Series

ex = 1 + x1! + x²2! + x³3! + …… to ∞ This is called exponential series.

Some Particular Cases

  1. e = 1 + 11! + 12! + 13! + …… ∞
  2. e-1 = 1 - 11! + 12! - 13! + …… ∞
  3. e-x = 1 - x1! + x²2! - x³3! + …… to ∞
  4. If a > 0. ax = ex log a = 1 + x log a1! + (x log a)²2! + …… to ∞

Illustration 1: n=11(2n-1)! equals

(A) e - e-12

(B) e + e-12

(C) e-1 - e²2

(D) none of these

Solution: (B).n=11(2n-1)! = 11! + 13! + 15! + …∞ = e - e-12

Illustration 2: If e5x + exe3x is expanded in the series of ascending powers of x and n is odd natural number, then the coefficient of xn is

(A) 2nn!

(B) 2n+12n!

(C) 22n2n!

(D) none of these

Solution: (D).e5x + exe3x = e2x + e-2x = 2(1 + 2²x²2! + 2⁴x⁴4! + ……)

This expansion does not contain any odd power of x ⇒ coefficient of xn when n is odd natural number is zero.
Exercise 1:Ques. ∑n=11(n-1)! is equal to

(A) e

(B) e - 1

(C) e - 2

(D) e - 3

Ques. ∑n=2n²n! is equal to

(A) 2e

(B) 3e

(C) e/2

(D) none of these

Ques. If S = 11.2 + 12.3 + 13.4 + 14.5 + ……, then eS equals

(A) loge (4/e)

(B) 4/e

(C) loge (e/4)

(D) e/4

Logarithmic Series

loge(1 + x) = x - x²2 + x³3 - x⁴4 + …… to ∞. This is called logarithmic series.

Some Particular Cases

  1. Replacing x by -x, |x| < 1: loge(1 - x) = -x - x²2 - x³3 - x⁴4 - …… to ∞
  2. loge1 + x1 - x = 2(x + x³3 + x⁵5 + …… to ∞)

Illustration 3: The sum of the series log₄ 2 - log₈ 2 + log₁₆ 2 - ... is

(A) e²

(B) loge 2 + 1

(C) loge 3 - 2

(D) 1 - loge 2

Solution: (D). given summation = 1log₂ 4 - 1log₂ 8 + 1log₂ 16 - 1log₂ 32 + ……

= 12 - 13 + 14 - 15 + …… = 1 - (11 + 12 + 13 + 14 + 15 + ……) = 1 - loge 2

Illustration 4: The sum of the series loge n + (loge n)³3 + (loge n)⁵5 + ..... upto ∞ is

(A) n² - 12n

(B) n² + 12n

(C) n(n + 1)2n

(D) n(n - 1)2n

Solution: (A). Sum of the given series = z + z³3 + z⁵5 + ……, where z = loge n = 12(eloge n - e-loge n)

= 12(n - 1n) = n² - 12n

Exercise 2:Ques. 2[m - nm + n + 13(m - nm + n)³ + 15(m - nm + n)⁵ + ……] is equal to

(A) log(mn)

(B) log(nm)

(C) log mn

(D) none of these

Ques. If S = ∑n=0(loge x)2n(2n)!, then S equals to(

A) x + 1x

(B) x - 1x

(C) 12(x + 1x)

(D) 12(x - 1x)

Ques. The sum of the series 12·2² + 13·2³ + 14·2⁴ + …… is

(A) loge(2/3)

(B) log₁₀(3/2)

(C) loge(3/2)

(D) none of these

Answer to ExercisesExercise 1

(i) A

(ii) A

(iii) A

Exercise 2

(i) A

(ii) C

(iii) C

Formulae and Concepts at a Glance

  1. ex = 1 + x + x²2! + x³3! + …∞ holds for all real values of x.
  2. log(1 + x) = x - x²2 + x³3 - x⁴4 + … is valid for -1 < x ≤ 1.
  3. log(1 - x) = -x - x²2 - x³3 - x⁴4 - …
  4. log 2 = 1 - 12 + 13 - 14 + …∞
  5. ax = 1 + x loge a + (x loge a)²2! + …∞

Solved Examples

Ques 1. The coefficient of xn in the expansion of ea + bx is

(A) eabnn!

(B) eab-nn!

(C) ebann!

(D) none of these

Sol. (A). ea + bx = ea·ebx = ean=0(bx)nn! ∴ coefficient of xn = eabnn!

Ques 2. Sum to n terms of the series 92! + 163! + 274! + 425! + …… is

(A) 11e - 6

(B) 11e + 6

(C) 6e - 11

(D) none of these

Sol. (A). Let Tn denote the nth term of the given series, then Tn = ann!, where an denotes then the term of the series 9 + 16 + 27 + 42 + ……., in which differences from an A.P.

To find an: Let sn be the sum of first n terms of the series 9 + 16 + 27 + 42 + ….., then

sn = 9 + 16 + 27 + 42 + ……+ an-1 + an ….(1)

Again sn = 9 + 16 + 27 +…..+ an-1 + an ….(2)

Subtracting (2) from (1), we obtain 0 = 9 + 7 + 11 + 15 +….. upto n terms - an

∴ an = 9 + {7 + 11 + 15 + …… upto (n - 1) terms}

= 9 + (n-1)2[2×7 + (n-1-1)×4] = 9 + (n-1)2[14 + 4n - 8]

= 9 + (n-1)(6 + 4n)2 = 9 + (n - 1)(3 + 2n) = 9 + 2n² + n - 3 = 2n² + n + 6

Hence, Tn = 2n² + n + 6n! = 2n²n! + nn! + 6n!

= 2n(n-1)! + 1(n-1)! + 6n!

= 2(n-2)! + 2(n-1)! + 1(n-1)! + 6n!

= 2(n-2)! + 3(n-1)! + 6n!

Substituting n = 2, 3, 4,…. and adding, we get T₂ + T₃ + T₄ + ….. to ∞;

= 2(10! + 11! + 12! + ……) + 3(11! + 12! + 13! + ……) + 6(12! + 13! + 14! + ……)

= 2e + 3(e - 1) + 6(e - 2); Adding T₁ to both sides, we get

Sum of the given series = 11e - 15 + T₁; = 11e - 15 + 9 = 11e - 6.

Ques 3. The sum of the series 1²·21! + 2²·32! + 3²·43! + 4²·54! + …… is equal to

(A) 5e

(B) 3e

(C) 7e

(D) 2e

Sol. (C). Given series is ∑n=1n²(n+1)n!

Let Tn denote the nth term, then Tn = n²(n+1)n! = n²(n+1)n! = n+1(n-1)! = n+1(n-1)!

= n(n-1)! + 1(n-1)! = 1(n-2)! + 1(n-1)!

= 1(n-2)! + 1(n-1)! = 2(n-2)! + 3(n-1)! + 1(n-2)! + 4(n-1)!

Ques 4. 12! + 1+23! + 1+2+34! + …… is equal to

(A) e2

(B) e3

(C) e4

(D) e5

Sol. (A). Here, Tn = 1+2+3+….+n(n+1)! = n(n+1)/2(n+1)! = n(n+1)2(n+1)! = 12(n-1)!

put n = 1, 2, 3,…. and add to obtain the required sum = e/2

Ques 5. If ex1-x = B₀ + B₁x + B₂x² + …+ Bnxn + …, then Bn - Bn-1 equals

(A) 1n!

(B) 1(n-1)!

(C) 1n! - 1(n-1)!

(D) 1

Sol. (A). ex = (B₀ + B₁x + B₂x² + …+ Bnxn + …)(1 - x)

= (B₀ + B₁x + B₂x² + …+ Bnxn + …) - (B₀x + B₁x² + B₂x³ + …+ Bn-1xn + …)

n=0xnn! = B₀ + ∑n=1 (Bn - Bn-1)xn

equating coeff. of xn on both sides, Bn - Bn-1 = 1n!

Q6. If an = n(n+1)2n!, then the sum of the series ∑an is

(A) e

(B) e⁻¹

(C) 3e2

(D) e2

Sol. (C). an = n(n+1)2n! = 12(n+1(n-1)!) = 12(1(n-2)! + 1(n-1)!)

∑an = 12∑(1(n-2)! + 1(n-1)!) = 12(e + e) = 3e2

Ques 7. x²2 + 23x³ + 34x⁴ + 45x⁵ + … is

(A) x1+x

(B) log(1 + x)

(C) x1-x + log(1 + x)

(D) none of these

Sol. (B). Tn = nn+1xn+1 = xn+1 - xn+1n+1; Putting n = 1, 2, 3, …

S = (x² + x³ + x⁴ + …) - (x²2 + x³3 + x⁴4 + …) = x1-x + log(1-x)

Ques 8. If 0 < y ≤ 21/3 and x(y³ - 1) = 1, then 2x + 23x³ + 25x⁵ + …… is equal to

(A) 13log(y³2-y³)

(B) 13log(y³1-y³)

(C) 13log(2y³1-y³)

(D) 13log(y³1-2y³)

Sol. (A).2x + 23x³ + 25x⁵ + ……… = 2t + 2t³ + 2t⁵ + ……

where t = 1x = y³ - 1

= 2 × 12log(1+t1-t) = log(1+y³-11-y³+1) = log(y³2-y³) = 13log(y³2-y³)

Ques 9. The sum of the series log₄2 - log₈2 + log₁₆2 + … is

(A) e²

(B) loge2 + 1

(C) loge3 - 2

(D) 1 - loge2

Sol. (D). Given series = 1log₂4 - 1log₂8 + 1log₂16 - 1log₂32 + ……

= 12 - 13 + 14 - 15 + ……

= 1 - (11 + 12 + 13 + 14 + 15 + ……) = 1 - loge2

Ques 10. Coefficient of x⁴ in the expansion of 1-3x+x²ex is

(A) 2524

(B) 2425

(C) 425

(D) 524

Sol. (A). (1 - 3x + x²) e-x

= (1 - 3x + x²)(1 - x + x²2! - x³3! + x⁴4! - ……)

Coefficient of x⁴ = 14! + 13! + 12! = 2524

Assignment Problems

Ques. If ex = y + √(1 + y²), then the value of y is

(A) ex - e-x

(B) 12(ex - e-x)

(C) ex + e-x

(D) 12(ex + e-x)

Ques. The coefficient of xr in the expansion of 1-ax-x²ex is

(A) (-1)rr!{-r² + r(a + 1) + 1}

(B) (-1)rr!{-r² + r(a + 1) - 1}

(C) (-1)rr!{-r² - r(a + 1) + 1}

(D) none of these

Ques. ∑n=1n²n! is equal to

(A) 2e

(B) 3e

(C) 12e

(D) none of these

Ques. The sum of the series 1 + 1+a2! + (1+a)²3! + …… is

(A) ea - aa-1

(B) ea - ea-1

(C) e2a - 1a-1

(D) none of these

Ques. 1/(1·2·3) + 5/(3·4·5) + 9/(5·6·7) + ... ∞ is equal to

(A) 3/2 + 3loge2

(B) 3/2 - 3loge2

(C) 3/4 - 3/2 loge2

(D) none of these

Ques. The sum of the series 2/1! + 6/2! + 12/3! + 20/4! + ... is

(A) 3e/2

(B) e

(C) 2e

(D) 3e

Ques. 5/(1·2·3) + 7/(3·4·5) + 9/(5·6·7) + ... is equal to

(A) log 8/2

(B) loge/8

(C) log 8e

(D) none of these

Ques. [1 + 2²/2! + 2⁴/3! + 2⁶/4! + ...] / [1 + 2/2! + 2²/3! + 2⁴/4! + ...] is equal to

(A) e² + 1

(B) e² - 1

(C) e - 1

(D) e + 1

Ques. In the expansion of ln[(1+3x)/(1-2x)], the fourth term is

(A) -1/5 x³

(B) 1/4 x⁴

(C) 65/4 x⁴

(D) none of these

Ques. The coefficient of xn in the expansion of log (1 + 3x + 2x²) is

(A) (-1)ⁿ/n (1 + 2ⁿ)

(B) -1/n (1 - 2ⁿ)

(C) (-1)ⁿ⁻¹/n (1 + 2ⁿ)

(D) none of these

Ques. If a = Σ(n=0 to ∞) x³ⁿ/(3n)!, b = Σ(n=0 to ∞) x³ⁿ⁻²/(3n-2)!, c = Σ(n=0 to ∞) x³ⁿ⁻¹/(3n-1)! then the value of a³ + b³ + c³ - 3abc is

(A) 1
(B) 0

(C) -1

(D) -2

Ques. If α, β are the roots of the equation x² - px + q = 0, then loge(1 + pt + qt²) is |t| < min{1/|α|, 1/|β|}

(A) (α + β)t + (α² + β²)/2 t² + (α³ + β³)/3 t³ + ...

(B) -[(α + β)t + (α² + β²)/2 t² + (α³ + β³)/3 t³ + ...]

(C) (α + β)t - (α² + β²)/2 t² + (α³ + β³)/3 t³ - ...

(D) none of these

Ques. If n is a multiple of 3, then coefficient of xn in the expansion of loge(1 + x + x²), where -1 < x < 0, is

(A) -2/n

(B) 2/n

(C) 1/n

(D) none of these

Ques. 1·3 + (2·4)/(1·2) + (3·5)/(1·2·3) + (4·6)/(1·2·3·4) + ... ∞ is equal to

(A) 4e

(B) 5e

(C) 6e

(D) 7e

Answer to Assignement

1. B

2. A

3. A

4. B

5. A

6. B

7. D

8. A

9. B

10. C

11. C

12. A

13. C

14. A

15. A

Frequently Asked Questions

  • Forgetting factorials in ex (every term after the first two has n! in the denominator).
  • Mixing the signs in ln(1 + x) (it alternates: +, −, +, −, …).
  • Using the log series when |x| ≥ 1 (it won’t be valid or will be very slow).
  • Confusing bases: ln means base e; log (in many school texts) often means base 10.

It is a step-by-step way to build the value of the exponential function. You start with a basic value and keep adding smaller and smaller corrections. Because each correction is tiny compared with the previous one, the total settles to the true value.

  • Exponential series: Safe to use for any input; it behaves well in general.
  • Logarithm series: Best when the number you are taking the log of is close to one. If the number is far from one, this method becomes slow or unhelpful.

Take only the first few corrections and stop when the next correction would be very small. For the logarithm series (near one), the corrections usually switch between adding and removing. For the exponential series, the corrections are all additions but get tiny very quickly. In most classroom problems, a few corrections give a good answer.

Yes. They measure the same idea on different scales. You can move from one to the other by multiplying or dividing by a fixed conversion factor. A common approach is to estimate using the natural version and then convert to the base-ten version if your book requires it.