Exponential Series
ex = 1 + x1! + x²2! + x³3! + …… to ∞ This is called exponential series.
Some Particular Cases
- e = 1 + 11! + 12! + 13! + …… ∞
- e-1 = 1 - 11! + 12! - 13! + …… ∞
- e-x = 1 - x1! + x²2! - x³3! + …… to ∞
- If a > 0. ax = ex log a = 1 + x log a1! + (x log a)²2! + …… to ∞
Illustration 1: ∑n=1∞1(2n-1)! equals
(A) e - e-12
(B) e + e-12
(C) e-1 - e²2
(D) none of these
Solution: (B). ∑n=1∞1(2n-1)! = 11! + 13! + 15! + …∞ = e - e-12
Illustration 2: If e5x + exe3x is expanded in the series of ascending powers of x and n is odd natural number, then the coefficient of xn is
(A) 2nn!
(B) 2n+12n!
(C) 22n2n!
(D) none of these
Solution: (D).e5x + exe3x = e2x + e-2x = 2(1 + 2²x²2! + 2⁴x⁴4! + ……)
This expansion does not contain any odd power of x ⇒ coefficient of xn when n is odd natural number is zero.
Exercise 1:Ques. ∑n=1∞1(n-1)! is equal to
(A) e
(B) e - 1
(C) e - 2
(D) e - 3
Ques. ∑n=2∞n²n! is equal to
(A) 2e
(B) 3e
(C) e/2
(D) none of these
Ques. If S = 11.2 + 12.3 + 13.4 + 14.5 + ……, then eS equals
(A) loge (4/e)
(B) 4/e
(C) loge (e/4)
(D) e/4
Logarithmic Series
loge(1 + x) = x - x²2 + x³3 - x⁴4 + …… to ∞. This is called logarithmic series.
Some Particular Cases
- Replacing x by -x, |x| < 1: loge(1 - x) = -x - x²2 - x³3 - x⁴4 - …… to ∞
- loge1 + x1 - x = 2(x + x³3 + x⁵5 + …… to ∞)
Illustration 3: The sum of the series log₄ 2 - log₈ 2 + log₁₆ 2 - ... is
(A) e²
(B) loge 2 + 1
(C) loge 3 - 2
(D) 1 - loge 2
Solution: (D). given summation = 1log₂ 4 - 1log₂ 8 + 1log₂ 16 - 1log₂ 32 + ……
= 12 - 13 + 14 - 15 + …… = 1 - (11 + 12 + 13 + 14 + 15 + ……) = 1 - loge 2
Illustration 4: The sum of the series loge n + (loge n)³3 + (loge n)⁵5 + ..... upto ∞ is
(A) n² - 12n
(B) n² + 12n
(C) n(n + 1)2n
(D) n(n - 1)2n
Solution: (A). Sum of the given series = z + z³3 + z⁵5 + ……, where z = loge n = 12(eloge n - e-loge n)
= 12(n - 1n) = n² - 12n
Exercise 2:Ques. 2[m - nm + n + 13(m - nm + n)³ + 15(m - nm + n)⁵ + ……] is equal to
(A) log(mn)
(B) log(nm)
(C) log mn
(D) none of these
Ques. If S = ∑n=0∞(loge x)2n(2n)!, then S equals to(
A) x + 1x
(B) x - 1x
(C) 12(x + 1x)
(D) 12(x - 1x)
Ques. The sum of the series 12·2² + 13·2³ + 14·2⁴ + …… is
(A) loge(2/3)
(B) log₁₀(3/2)
(C) loge(3/2)
(D) none of these
Answer to ExercisesExercise 1
(i) A
(ii) A
(iii) A
Exercise 2
(i) A
(ii) C
(iii) C
Formulae and Concepts at a Glance
- ex = 1 + x + x²2! + x³3! + …∞ holds for all real values of x.
- log(1 + x) = x - x²2 + x³3 - x⁴4 + … is valid for -1 < x ≤ 1.
- log(1 - x) = -x - x²2 - x³3 - x⁴4 - …
- log 2 = 1 - 12 + 13 - 14 + …∞
- ax = 1 + x loge a + (x loge a)²2! + …∞
Solved Examples
Ques 1. The coefficient of xn in the expansion of ea + bx is
(A) eabnn!
(B) eab-nn!
(C) ebann!
(D) none of these
Sol. (A). ea + bx = ea·ebx = ea ∑n=0∞(bx)nn! ∴ coefficient of xn = eabnn!
Ques 2. Sum to n terms of the series 92! + 163! + 274! + 425! + …… is
(A) 11e - 6
(B) 11e + 6
(C) 6e - 11
(D) none of these
Sol. (A). Let Tn denote the nth term of the given series, then Tn = ann!, where an denotes then the term of the series 9 + 16 + 27 + 42 + ……., in which differences from an A.P.
To find an: Let sn be the sum of first n terms of the series 9 + 16 + 27 + 42 + ….., then
sn = 9 + 16 + 27 + 42 + ……+ an-1 + an ….(1)
Again sn = 9 + 16 + 27 +…..+ an-1 + an ….(2)
Subtracting (2) from (1), we obtain 0 = 9 + 7 + 11 + 15 +….. upto n terms - an
∴ an = 9 + {7 + 11 + 15 + …… upto (n - 1) terms}
= 9 + (n-1)2[2×7 + (n-1-1)×4] = 9 + (n-1)2[14 + 4n - 8]
= 9 + (n-1)(6 + 4n)2 = 9 + (n - 1)(3 + 2n) = 9 + 2n² + n - 3 = 2n² + n + 6
Hence, Tn = 2n² + n + 6n! = 2n²n! + nn! + 6n!
= 2n(n-1)! + 1(n-1)! + 6n!
= 2(n-2)! + 2(n-1)! + 1(n-1)! + 6n!
= 2(n-2)! + 3(n-1)! + 6n!
Substituting n = 2, 3, 4,…. and adding, we get T₂ + T₃ + T₄ + ….. to ∞;
= 2(10! + 11! + 12! + ……) + 3(11! + 12! + 13! + ……) + 6(12! + 13! + 14! + ……)
= 2e + 3(e - 1) + 6(e - 2); Adding T₁ to both sides, we get
Sum of the given series = 11e - 15 + T₁; = 11e - 15 + 9 = 11e - 6.
Ques 3. The sum of the series 1²·21! + 2²·32! + 3²·43! + 4²·54! + …… is equal to
(A) 5e
(B) 3e
(C) 7e
(D) 2e
Sol. (C). Given series is ∑n=1∞n²(n+1)n!
Let Tn denote the nth term, then Tn = n²(n+1)n! = n²(n+1)n! = n+1(n-1)! = n+1(n-1)!
= n(n-1)! + 1(n-1)! = 1(n-2)! + 1(n-1)!
= 1(n-2)! + 1(n-1)! = 2(n-2)! + 3(n-1)! + 1(n-2)! + 4(n-1)!
Ques 4. 12! + 1+23! + 1+2+34! + …… is equal to
(A) e2
(B) e3
(C) e4
(D) e5
Sol. (A). Here, Tn = 1+2+3+….+n(n+1)! = n(n+1)/2(n+1)! = n(n+1)2(n+1)! = 12(n-1)!
put n = 1, 2, 3,…. and add to obtain the required sum = e/2
Ques 5. If ex1-x = B₀ + B₁x + B₂x² + …+ Bnxn + …, then Bn - Bn-1 equals
(A) 1n!
(B) 1(n-1)!
(C) 1n! - 1(n-1)!
(D) 1
Sol. (A). ex = (B₀ + B₁x + B₂x² + …+ Bnxn + …)(1 - x)
= (B₀ + B₁x + B₂x² + …+ Bnxn + …) - (B₀x + B₁x² + B₂x³ + …+ Bn-1xn + …)
∑n=0∞xnn! = B₀ + ∑n=1∞ (Bn - Bn-1)xn
equating coeff. of xn on both sides, Bn - Bn-1 = 1n!
Q6. If an = n(n+1)2n!, then the sum of the series ∑an is
(A) e
(B) e⁻¹
(C) 3e2
(D) e2
Sol. (C). an = n(n+1)2n! = 12(n+1(n-1)!) = 12(1(n-2)! + 1(n-1)!)
∑an = 12∑(1(n-2)! + 1(n-1)!) = 12(e + e) = 3e2
Ques 7. x²2 + 23x³ + 34x⁴ + 45x⁵ + … is
(A) x1+x
(B) log(1 + x)
(C) x1-x + log(1 + x)
(D) none of these
Sol. (B). Tn = nn+1xn+1 = xn+1 - xn+1n+1; Putting n = 1, 2, 3, …
S = (x² + x³ + x⁴ + …) - (x²2 + x³3 + x⁴4 + …) = x1-x + log(1-x)
Ques 8. If 0 < y ≤ 21/3 and x(y³ - 1) = 1, then 2x + 23x³ + 25x⁵ + …… is equal to
(A) 13log(y³2-y³)
(B) 13log(y³1-y³)
(C) 13log(2y³1-y³)
(D) 13log(y³1-2y³)
Sol. (A).2x + 23x³ + 25x⁵ + ……… = 2t + 2t³ + 2t⁵ + ……
where t = 1x = y³ - 1
= 2 × 12log(1+t1-t) = log(1+y³-11-y³+1) = log(y³2-y³) = 13log(y³2-y³)
Ques 9. The sum of the series log₄2 - log₈2 + log₁₆2 + … is
(A) e²
(B) loge2 + 1
(C) loge3 - 2
(D) 1 - loge2
Sol. (D). Given series = 1log₂4 - 1log₂8 + 1log₂16 - 1log₂32 + ……
= 12 - 13 + 14 - 15 + ……
= 1 - (11 + 12 + 13 + 14 + 15 + ……) = 1 - loge2
Ques 10. Coefficient of x⁴ in the expansion of 1-3x+x²ex is
(A) 2524
(B) 2425
(C) 425
(D) 524
Sol. (A). (1 - 3x + x²) e-x
= (1 - 3x + x²)(1 - x + x²2! - x³3! + x⁴4! - ……)
Coefficient of x⁴ = 14! + 13! + 12! = 2524