Some Basic Concepts of chemistry


LAWS OF CHEMICAL COMBINATION

(i)    Law of conservation of mass: In all physical and chemical changes, the total mass of the reactants is equal to that of the products. In other words, matter can neither be created nor be destroyed. 
     

(ii)    Law of constant composition or definite proportion: A chemical compound is always found to be made up of the same elements combined together in the same fixed proportion by weight.
        For example, pure water obtained from whatever source or any country will always be made up of only hydrogen and oxygen elements combined together in the same fixed ratio of 1 : 8 by weight.
(iii)   Law of multiple proportions: When two elements combine to form two or more chemical compounds then the weights of one of elements which combine with a fixed weight of the other bear a simple ratio to one another.
        e.g. the weights of nitrogen and oxygen forming compound N2O, NO, N2O3, N2O4, N2O5, if we fix the weight of nitrogen as 14 then weight of oxygen bears a simple ratio 1 : 2 : 3 : 4 : 5 to one another.
(iv)   Law of reciprocal proportions: The ratio of the weights of two elements A and B which combine separately with a fixed weight of the third element C is either the same or some simple multiple of the ratio of the weights in which A and B combine directly with each other. For example, CO2, SO2 and CS2, H2S, H2O and SO2.
(v)    Gay Lussac’s law of gaseous volumes: When gases react together they always do so in volumes which bears a simple ratio to one another and to the volumes of the products, if these are also gases, provided all measurements of volumes are done under similar conditions of temperature and pressure. For example
        N2 + 3H2  →   2NH3
       1vol. 3vol.        2vol.

AVOGADRO’S HYPOTHESIS

Equal volumes of all gases under similar conditions of temperature and pressure contains equal number of molecules.

Applications of Avogadro’s law

(i)    In the calculation of atomicity of elementary gases.
(ii)    To find the relationship between molecular weight and vapour density of a gas.
     Molecular weight = 2 x Vapour density
(iii)    To find the relationship between weight and volume of a gas.
    Molecular weight = Weight of 22.4 L of the gas at STP

MASS CONCEPTS

(i)    Atomic Mass: The atomic mass of an element is a number which indicates how many times an atom of natural isotopic composition of an element is heavier as compared with 1/12 of mass of a atom of carbon-12.
(ii)    Gram atomic mass: The atomic mass of an element expressed in grams is called Gram atomic mass e.g., 
        Atomic mass of oxygen = 16 a.m.u.
    Gram atomic mass of oxygen = 16 a.m.u
    Note: (1 a.m.u. = 1.6 x 10-24 g) 
(iii)    Molecular mass: The molecular mass of a substance (element or compound) is the number of times, the molecule of substance is heavier than  of the mass of an atom of Carbon–12 isotope.
(iv)    Gram molecular mass: The molecular mass of a substance expressed in grams is called its Gram molecular mass.

1 gram molecule of H2SO4 = 98.0 g

(v)    Atomic Mass Unit: The quantity 1/12th mass of and atom of carbon-12 is known as atomic mass unit.
    
    A mole is defined as number of atoms in 12g of carbo-12, which is experimentally found to be 6.023 x 1023.

Example 1 : In naturally occurring neon, isotopes and their relative abundance are as follows:

                  Isotope    Fractional Abundance
                    2oNe    0.9051
                    21Ne    0.0027
                    22Ne    0.0922
               Average atomic mass of Ne is
              (A)20.179    (B)    21.179
              (C)22.179    (D)    20

Solution:    (A)
        Average atomic mass of Ne = 20 x 0.9051 + 21 x 0.0027 + 22 x 0.0922 = 20.179
        Aliter
       From the fraction abundance of various isotopes, clearly shows that the average atomic mass should be near to 20 (20Ne). Hence, (A) is correct

MOLE CONCEPT

For counting of articles, units like dozen or score is commonly used. Similarly in chemistry ‘mole’ is the counting unit for chemical entities.
The amount of substance containing Avogadro’s number (6.023 x 1023) atom, molecule, ions, electrons and protons, i.e.

(i)    Number of moles of molecule  
(ii)    Number of moles of atoms  
(iii)    Number of moles of gases  
(iv)    Number of milli moles  = molarity x volume in ml.
(v)    For a compound PxQy
    x moles of Q = y moles of P
(vi)     

Example 2 :   

                   

Solution:    (D).
        Moles of SO2  
        Number of atoms  

Example 3 : The volume (in L) of CO2 liberated at STP when 10 g of 90% pure lime stone is heated completely is
                     (A) 20.16    (B)    2.016
                     (C) 2.24    (D)    22.4

Solution:    (B).   CaCo3 ⟶ CaO + CO2
                    Moles of CaCO3  
                    Moles of CO2 = 0.09  
                    Volume at STP = 2.016 L

Example  4 :   44.8 litre of CO2 at STP is obtained by heating x gm of pure CaCO3. x is
                       (A)100 g    (B)    200 g
                       (C)50 g    (D)    44.8 g

Solution:     (B). 
         CaCO3  CO2 + CaO
        1 mol of CO2 is obtained from 1 mole of CaCO3
        22.4 litre of gas at STP = 1 mol of gas
        44.8 litre of gas at STP = 2 mol of gas
        Hence,
        2 mole of CO2 is obtained from 2 mole of CaCO3
        i.e., 2 x 100 = 200 gm of CaCO3

DETERMINATION OF MOLECULAR FORMULAE

The percentage composition of a compound leads directly to its empirical formula. An empirical formula or simplest formula for a compound is the formula of a substance written with the smallest integer subscripts. The molecular formua of a compound is a multiple of its empirical formula.
(a)    Law of isomorphism: Isomorphism substances form crystal which have same structure. Thus both the cation and anion of isomorphous substance have the same valency.
(b)    Chemical formulae of a compound can be found out by the following steps:
    (i)    The percentage composition of compound is determined.
    (ii)    Then the percentage of each element is divided by the atomic mass and then a molar ratio of each element is obtained.
    (iii)    This molar ratio is divided by a minimum value to get the simplest ratio and an empirical formula is obtained.
    (iv)    Finally by comparing the molecular mass or vapour density of this empirical formulae to that of actual molecule its molecular formulae is obtained.

Example 5 :  An organic compound contains 49.3% carbon, 6.84% hydrogen 
                         and its vapour density is 73. Molecular formula of the 
                         compound is
                     (A) C3H8O2    (B)    C3H10O2
                     (C) C6H9O    (D)    C6H10O4

Solution:    (D)    
        Step (i) 
            C = 49.3%, H = 6.84%
            O = 43.86%
        Step (ii)
            C : H : O  
        or    C : H : O = 4.11 : 6.84 : 2.74
        Step (iii)
            Dividing through out by 2.74
            C : H : O = 1.5 : 2.54 : 1
        or    C : H : O = 3 : 5 : 2
            Empirical formulae = C3H5O2
        Empirical formula mass = 73
        Molecular mass of compound = 73 x 2 = 146
            Molecular formula 

Example 6 : A compound K2XO4 is isomorphous to potassium sulphate (K2SO4) and is found to contain 26.78% ‘X’. Calculate the mass of ‘X’?
                     (A) 22        (B)    26
                     (C) 52        (D)    44

Solution:    (C).
        Let the mass of ‘X’ can be m.

BALNCING REDOX REACTIONS

Quite often one has to write a balanced chemical equation while dealing with the problem on stoichiometry. After writing reactant and products, the balancing can be carried out by hit and trial method. However, systematic methods are available for balancing redox reactions. Before describing these methods, the rules governing the computation of oxidation state of an element are described in the following.

Rules to Compute Oxidation Number

The oxidation number of an element is the number assigned to it by following the arbitrary rules given below:
(i)    A free element (regardless of whether it exists in monatomic or polyatomic form, e.g. Hg, H2, P4 and S8) is assigned an oxidation number of zero.
(ii)    A free monatomic ion is assigned an oxidation number equal to the charge it carries. For example, the oxidation number of Al3+, S2- and Cl- are +3, -2 and -1 respectively.
(iii)    In their compounds, the alkali and alkaline earth metals are assigned oxidation numbers of +1 and +2 respectively.
(iv)    The oxidation number of hydrogen in its compounds is generally +1 except the ionic hydrides such as LiH, LiAlH4 where its oxidation number is -1.

(v)    The oxidation number of fluorine in all its compounds is -1. The oxidation number of all other halogens is -1 in all compound except those with oxygen (e.g.CIO-4) and halogens having a lower atomic number (e.g. ICI-3 ). The oxidation number of the latter is determined via oxygen and halogen of lower atomic number.
(vi)    The oxidation numbers of both oxygen and sulphur in their normal oxides (e.g. Na2O) and sulphides (e.g. CS2) is -2. The exception are the peroxides (e.g. H2O2 and Na2O2), superoxides (e.g. KO2) and the compound OF2. Their oxidation numbers are determined by the rules 3, 4 and 5.
(vii)    The algebraic sum of oxidation numbers of atoms in a chemical species (compound or ion) is equal to the net charge on the species.
A few examples of the computation of oxidation number of atoms N in various compounds are given as follows.
If x is the oxidation number of N, we have
NH3          x + 3(+1) = 0                    which gives x = -3
HN3          +1 + 3(x) = 0                    which gives x = -1/3
N2H4        2x + 4(+1) = 0                  which gives x = -2
NO2          x + 2(-2) = 0                    which gives x = 4
N2O4        2x + 4(-2) = 0                  which gives x = 4
NO-2         x + 2(-2) = -1                   which gives x = 3
NH2OH    x + 2(+1) + 1(-2) + 1 = 0            which gives x = -1
NO           x + 1(-2) = 0                     which gives x = 2
HNO3      +1 + x + 3(-2) = 0             which gives x = 5
H2O         2x + 1(-2) = 0                   which gives x = 1
HCN        +1 + 4 + x = 0                  which gives x = -5

Balancing Redox Reactions Via Oxidation Numbers

The steps involved in this method are as follows:
1.    Identify the elements in the unbalanced equation whose oxidation number are changed.
2.    Balance the number of atoms of each element whose oxidation number is changed.
3.    Find out the total change in oxidation number for each of oxidant and reductant and make them equal  by multiplying by small coefficients.
4.    Balance the remainder of atoms by inspection and add, if necessary H+(acidic medium) or OH-(alkaline medium) or H2O (to balance oxygen) as the case may be.


Example 7 :  Cu + 8H+ + yNO-3 ⟶ zCu2+ + 4H2O + 2NO
                     The values of x, y and z are respectively
                    (A) 3, 2, 3,     (B)    2, 3, 3
                    (C) 3, 3, 3    (D)    4, 3, 1
Solution:    (A).

Ion – electron method or Half reaction method

The various steps involved are –
(i)    Write the skeletal equation and indicate the oxidation number (O. N.) of each element.
(ii)    Identify the elements which has undergone change in oxidation state.
(iii)    Divide the skeletal equation into two half reactions i.e. oxidation half reaction and reduction half reaction. In each half reaction balance the atom which undergo change in oxidation number.
(iv)    Add electron to whichever side is necessary to make up the difference in oxidation number in each half reaction.
(v)    Balance oxygen atoms by addition of proper number of H2O molecules to side deficient in ‘O’ atoms.
(vi)    For ionic equations – It involves the balancing of H atoms in each half reaction. (after O is balanced in each half reaction).
    (a) For acidic medium: Add proper number of H+ ions to the side falling short of H atoms.
    (b) For basic medium: Add proper number of H2O molecules to the side falling short of H atoms and equal number of OH- ions to the other side.
(vii)    Equalise the number of electrons lost and gained by multiplying the half reactions with suitable integer and add them to get the final equation.

Note:    It may be remembered that in balanced equation the number of atoms and also the electrical charges must be equal on both sides.


Illustration  8 : wCr2O7-2 + xFe+2 ⟶ yCr+3 + zFe+3 + 7H2O (in acidic medium)
               Balance the reaction by ionic method and find the values of w, x, y 
                   and z respectively?
               (A) 1, 7, 2, 6    (B)    1, 6, 2, 6
               (C) 2, 6, 2, 6    (D)    3, 5, 3, 7
Solution:    (B).

             
        First balance ‘O’ adding equal number of H2O molecules and then ‘H’ atom by adding H+ to deficient side.

  

CONCEPT OF LIMITING REAGENT

When ever, the ratios of reactant molecules actually used in an experiment are different from those given by co–efficients of the balance equaiton, a surplus of one reagent is left over after the reaction is completed.

Thus the extent to which a reaction takes place, depends on the reactant that is present in limiting amount – the limiting reactant. The other reactant is said to be the excess reactant.

Consider the following chemical reaction
 N2 = 3H2 ⟶ 2NH3
From the reaction, it is clear that 1 mol N2 reacts with 3 mol H2 to from 2 mol NH3.
If we take 1 mol N2 and 4 mol H2, even then 2 mol of NH3 are formed since 1 mol H2 is left unreacted. So in this case N2 is limiting reagent.
Now, if we take 2 mol N2 and 3 mol H2 even then 2 mol of NH3 are formed and 1 mol N2 is left unreacted. So in this case H2 is limiting reagnet.

Example  9 :  A sample of Ca3(PO4)2 contains 3.1 g phosphorus, the weight of Ca in 
                   the sample is
               (A) 6 g        (B)    4 g
               (C) 2 g        (D)    5 g
Solution:     (A).
Mole of phosphorus  
                           Mole of Ca   
                          Weight of Ca  

Example 10 : If 0.5 mol of BaCl2 is mixed with 0.2 mol of Na3PO4, the maximum 
                  number of moles of Ba3(PO4)2 that can be formed is
              (A) 0.7    (B) 0.5
              (C) 0.30    (D)    0.10
Solution:     (D).
3BaCl2 + 2Na3PO4  ––⟶  Ba3(PO4)2 + 6NaCl 
        Here Na3PO4 is limiting 
        Hence moles of Ba3(PO4)2 = ½ of Na3PO4 
                                 = 1/2 x0.2 = 0.1 mole

Volumetric Stoichiometry

The reactions in solutions are by far the most common. The first step to determine is to express the amount of substance present in a given volume of a solution.
 Solution ––⟶ Solute + Solvent
Qualitative methods to express a solution are dilute, concentrated, saturated and super saturated.
Quantitative method involves the determination of concentration in different way as described below:

(i)    Molarity: It is the number of moles of solute dissolved or present per litre of the solution. It is represented by the symbol M.
        
(ii)    Molality: Number of moles of solute present or dissolve in 1000 g or 1 kg of solvent. It is represented by the symbol m.
        
(iii)    Mole fraction: It is the relative ratio of moles of solute and solution or solvent and solution.
         
    Note: Molarity is temperature dependent while mole fraction and molality is temperature independent.

(iv)    Strength: The strength of a solution is defined as the amount of the solute in grams present per litre of the solution (i.e. g/L).
(v)    Normality: The normality of a solution is defined as the number of gram equivalents of the solute present per litre of the solution, it is represented by N.
        
    E = Equivalent weight
(vi)    Formality: Formality is similar to Molarity. It is especially used for ionic crystals like Na+Cl–.
     

Example 11 :  Which of the following does not depend on temperature?
                         (A) Molality    (B)    Mole fraction
                         (C) Mole    (D)    All of the above

Solution:    (D). 
        Weight is independently temperature.

CALCULATION OF EQUIVALENT WEIGHT

Equivalent weight of an element can be calculated using the composition of the compound of the given element with any other element whose equivalent weight is known by the knowledge of the law of equivalence.
This law states that one equivalent of an element combines with one equivalent of the other.
Hence, the equivalent weight of an element is the weight of its mole combining with one equivalent of another element.
In general, equivalent weight  
We can easily calculate equivalent weight if we know proper idea about n–factor. n–factor varies for element, salt, acid, base and redox as well as disproportionation reaction.
(i)    Equivalent weight of element  
(ii)    Equivalent weight of acid  

Acid Basicity (maximum)
HCl, HNO3, H3BO3 1
H2SO4, H3PO3, H2C2O4·2H2O 2
H3PO4 3
H4P2O7 4

 

(iii)    Equivalent weight of base  

 

Base Acidity (maximum)
NaOH, KOH 1
Ca(OH)2, Ba(OH)2 2
AI(OH)3 3

(iv) 

Note: In case of hydrated salt mass of water is included but not the number of H+ ion.

(v)    Equivalent weight of oxidizing and reducing agent
         

(vi)    Equivalent weight of an ion  

Law of Equivalence

For a chemical reaction:
 aA + bB ⟶ cC + dD
       
where ni and Mi is n factor, molecular mass of ith species.
If the reaction is carried out in solution, then
        NAVA = NBVB = NCVC = NDVD
or    nAMAVA = nBMBVB = nCMCVC = nDMDVD

Normality equation

N1V1 = N2V2
Gram equivalent of acid = Gram equivalent of base (if volume in L)

Milliequivalents

Milliequivalents = Normality x volume(in ml)
For a given solution, number of equivalents per litre is same as the number of milliequivalents per ml. Moles, millimoles, equivalent, milli equivalent of solute does not change on dilution.

Example 12 : The equivalent weight of potassium permanganate (KMnO4) in acidic 
             medium is
               (A)158    (B)    79
                (C)31.6    (D)    316
Solution: (C). 

          2KMnO4 + 3H2SO4 ⟶ K2SO4 + 2MnSO4 + 3H2O + 5O
        The net reaction is
        
        Change in oxidation number = 7 - 2 
                           = 5
        Equivalent weight of KMnO4 = 

 

Example 13 : The equivalent weight of ferric oxalate in the reaction with KMnO4/H+ is    
                       (A)M/6    (B)    M/3
                       (C) M    (D)    M/2
                       where, M = molecular weight of ferric oxalate.
Solution:     (A).  

        n–factor for Fe2(C2O4)3 = 6x1 = 6
        Equivalent weight  

Example 14 :   1.5 litre of a solution of normality N and 2.5 litres of 2M HCl are mixed 
                            together. The resultant solution had a normality 5. The value of N is
                           (A) 6    (B)    10
                           (C) 8    (D)    4
Solution:     (B).
Eq. of 1.5 litre solution + Eq. of 2.5 litre solution = Eq. of resultant of solution.
        = 1.5 x N + 2.5 x 2 = 4 x 5
          N =   = 10

TITRATIONS

In volumetric analysis, the process of determination of strength of an unknown solution by another solution of known strength under volumetric conditions is known as titration. Titrations are of various types–The fundamental basis of all titration is the law of equivalence which states that at the end point, the milliequivalent of known solution is equal to milliequivalent of given unknown solution which is observed by using an indicator.
                                                                                                                                  

Simple titration

In a simple titration, a solution of substance A of unknown concentration is made to react with a solution of reagent B whose concentration is known, so that the concentration of A may be calculated. 
N1V1 = N2V2
 (A)    (B)
N2 = 

Example 15 :  1.0 g of mixture of Na2CO3 and NaCl is neutralized by 100 ml of a 0.1 
                            N HCl solution. The percentage composition of NaCl in mixture is
                        (A)53%    (B)    47%
                        (C) 50%    (D)    40%
Solution:     (B).
 
        meq. of Na2CO3 = meq. of HCl (NaCl not react with HCl)
         
        x = 0.53 gm
        Mass of NaCl = 0.47 gm
        % of NaCl = 47%

Back titration

Let us assume that we have a solid C which is impure and we want to calculate the percentage purity. We are given two reagents A and B, where the concentration of A is unknown while that of B is known (N1).
Note:   (i)     A, B and C should be such that A reacts with B, A reacts with C and the product of A and C cannot react with B.
    
(ii) Gram equivalent of A should be either greater than or equal to gram equivalents of C.
     meq. of C = (meq. of A – meq. of B)

Example 16 : 0.5 g of impure CaCO3 was treated with 50 ml of  HCl. The excess of 
                           HCl was neutralized by 6 ml of  NaOH solution. The percentage 
                          purity of CaCO3 is
                      (A)84%    (B)    44%
                      (C)21%    (D)    46%

Solution:     (B).  meq.  of excess of HCl = meq.  of NaOH = 0.6
                meq.  of used HCl for CaCO3 = 5 – 0.6 = 4.4
                meq.  of CaCO3 = meq.  of used HCl
                  

Double titration

This is done by
(i)      Using two indicators:

Indicator pH range Colour
In acid In base
HPh (Phenolphthalein) (8–10) Colourless Pink
MeOH (Methyl orange) (3–4) Orange Yellow

When the solution containing NaOH and Na2CO3 is titrated using phenolphthalein indicator, following reaction takes place at the end point 
        NaOH + HCl ──⟶ NaCl + H2
        Na2CO3 + HCl ──⟶ NaHCO3 + NaCl 
        meq. of NaOH + meq. of Na2CO3 = meq. of HCl                 

                 … (i)
        When MeOH is used Na2CO3 convert into NaCl + CO2 + H2O
        meq. of NaOH + meq. of Na2CO3 = meq. of HCl         

            … (ii)


(ii)    Using two reagents:
    Mixture of (H2C2O4 + H2SO4)  (complete reaction)
    Mixture of (H2C2O4 + H2SO4)  (complete neutralization) 
    For step (i), H2SO4 + H+ + KMnO4 ⟶ Mn2+ + CO2 + H2O
     Meq. of H2SO4 = Mqe. of KMnO4
               (n=2)        (n=5)
    For step (ii), meq. of H2SO4 = meq. of NaOH

Example 17 :  40 ml of 0.05 M solution of sodium sesquicarbonate 
                   (Na2CO3.NaHCO3.2H2O) is titrated against 0.05 M HCl. X ml of HCl is 
                   used when phenolphthalein is the indicator and y ml of HCl is used 
                   when methyl orange is the indicator in two separate titrations. Hence 
                   (y–x) is
                  (A) 80 ml            (B) 30 ml
                  (C) 120 ml    (D) 180 ml

Solution: (A).  Millimole of mixture = Millimole of Na2CO3      
        =40 x 0.05 = 2 millimole = millimole of NaHCO3
        Millimole of Na2CO3 = Millimole of HCl
        2 = 0.05 x
        x = 40 ml
        meq.  of Na2CO3 + meq.  of NaHCO3 = meq.  of HCl
         2 x 2 + 1 x2 = 0.5g
         
        x = 120 – 40 = 80 ml

Redox titration

It is a common reaction used in redox titration.
(i)  2KMnO4 + 3H2SO4 ──K2SO4 + 2MnSO4 + 3H2O +5O
     (n = 5)         
(ii) K2Ce2O7 + 4H2SO4 ── K2SO4 + Cr(SO4)3 + 4H2O + 3O
     (n = 6)
(iii) 2[Fe(SO4).(NH4)2SO4.6H2O]+ H2SO4 + O ⟶Fe2(SO4)3 + 2(MnO)2SO4 + 13H2O
    Valency of KMnO4 in different medium:
     
Example 18 :  0.185 g of an iron wire containing 99.8% iron is dissolved in an acid 
                            to form ferrous ions. The solution requires 29.3 ml of K2Cr2O7 
                            solution for complete reaction. The normality of the K2Cr2O7 solution 
                            is
                         (A) 0.02    (B)    0.025
                         (C) 0.01    (D)    0.05
Solution:     (C).

         Fe2+ + K2  O7 + H+ ──⟶Cr3+ + Fe3+
                   n=1      n=6
        meq. of Fe2+ = meq.  of K2Cr2O7
         
        N = 0.01 (approx)

Iodine titration

Titrations involving compounds of iodine are known as Iodometric titrations. Iodine molecules, I2 gives blue colour with starch. Thus, the completion of reaction can be detected when blue colours disappears at the end of the reaction.

(i)    Iodometric: When an iodine containing sample is treated with oxidising reagent (KMnO4, K2Cr2O7, CuSO4, H2O2 and O3). Iodine so liberated is then treated with hypo solution, meq. of which is known to us.
    i.e. 2KI + H2O2 ──⟶2KOH + I2   
    I2 + 2Na2S2O3 ──⟶2NaI + Na2S4O6
    meq. of hypo = meq. of I2 = meq. of H2O2

(ii)    Iodimetric: In this titration, I2 is directly treated with a reducing agent.
     I2 + 2Na2SO3 ──⟶Na2SO4 + NaI
     I2 + Na3AsO3 ──⟶Na3AsO4 + NaI
     I2 + 2Na2S2O3 ──⟶ Na2S4O6 + 2NaI
    meq. of I2 = meq. of hypo or reducing agent

VOLUME STRENGTH OF H2O2
 
X volume strength of H2O2 means X litre of O2 is liberated by 1 L of H2O2 on decomposition at STP.

Example  19:  A ‘10–volume’ H2O2 solution is equal to
                        (A)   3% (W/W) H2O2    (B)    30 gm/L H2O2
                        (C)   1.76 N                    (D)    All are true

Solution:     (D). 
        Volume strength = N x 5.6

         

        W = E.N.V (in L)

     

   

Some useful reactions for stoichiometry
(i)    2NaHCO3  Na2CO3 + CO2 ↑ +H2O ↑         
(ii)    Ag2CO3  2Ag + CO3  
(iii)    2(NH4)2SO4  N2 ↑ + 6H2O↑ + 3SO2 ↑ + 4NH3

     
(iv)     


(v)     


(vi)    2CuSO4 + 4KI ──⟶Cu2I2 + I2 + 2K2SO4     
(vii)    O3 + KI + H2O ──⟶2KOH + I2 + O2     
(viii)    2MnO-4 + 5C2O-+ 16H+ ──⟶ 2Mn2+ + 10CO2 + 8H2O     
(ix)    BaCO3 + HCl ──⟶ BaCl2 + CO2 + H2O     
(x)    BaCl2 + H2CrO4 ──⟶ BaCrO4 + 2HCl     
(xi)    MnO2 + 4HCl ──⟶ MnCl2 + 2H2O + Cl
(xii)    Cr2O--7 + 3C2O4 + 14H+ ──⟶ 6CO2 + 2Cr3+ + 7H2O     
(xiii)    3Br2 + 6OH- ──⟶ BrO-3 + 5Br- + 3H2O     
(xiv)    Ca(HCO3)2 + CaO ──⟶ 2CaCO3 + H2O     
(xv)    3BaCl2 + 2Na3PO4 ──⟶ Ba3(PO4)2 + 6NaCl     
(xvi)    BaCrO4 + 6Kl + 8H2SO4 ──⟶ 3I2 + 2BaSO4 + 3K2SO4 +Cr2(SO4)3 + 8H2O      
(xvii)     2KMnO4 + 10FeSO4 + 8H2SO4 ──⟶2MnSO4 + 5Fe(SO4)3 + 8H2O + K2SO4
(xviii)     Fe2S3 + O2 ──⟶ 2FeS + SO2

(xix)    Kl + I2 ──⟶ Kl3 (brown colour)     
(xx)    Kl3 + 2Na2S2O3 ──⟶ 2Nal- + Na2S4O6 + Kl     
(xxi)    2N3H + I2 ──⟶ 3N2 + 2HI     
(xxii)     
(xxiii)    PCI5 + H2O ──⟶ POCI3 + HOCI
        POCI3 + 3H2O──⟶H3PO4 + 3HCI

ANSWER TO EXCERCISE

Exercise 1.                D 
Exercise 2.         i)     A 
                           ii)     A

Exercise 3:                D

Exercise 4:                B

Exercise 5.                C

Exercise 6.                B

Exercise 7.                D

Exercise 8.               C

Exercise 9.               B

Exercise 10.    (1)    A 
                         (2)    A

Exercise 11.            B

Exercise 12.            A
  
Exercise: 13.          D 

Exercise 14.           C
 

POINTS TO PONDER

1.    Stoichiometry is that branch of chemistry which deals with quantitative interpretation of chemical reaction.

2.    Law of conservation of mass states that, matter can neither be created nor be destroyed.

3.    For ideal gases molecular weight of the gas is twice its molecular weight.

4.    Weight of 1 mol of a substance is equal to its molecular weight.

5.    1 mole of an ideal gas occupy a volume of 22.4 litre at standard temperature and pressure (STP).

6.    Standard temperature and pressure refers to 0C and 1 atm pressure respectively.

7.    Limiting reagent is completely consumed during chemical reaction.

8.    The law of equivalence states that are equivalent of an element or compound combines with one equivalent of the other.

9.    Equivalent weight calculated by dividing molecular mass or atomic mass with n-factor.

10.    Titration is the process of determining strength of an unknown solution by another solution of known strength.
 

SOLVED EXAMPLES

1.    The oxidation number of Cr is +6 in
    (A)    FeCr2O4        (B)    Fe2(CrO4)2
    (C)    Cr2(SO4)3   (D)    [Cr(OH)4]

Sol.    (B). 2(+2) + 2[x + 4(-2)] = 0
    Here x is oxidation number of Cr
    +4 + 2x – 16 = 0
    2x = +12
    x = +6

2.    Oxidation number of chromium pentoxide (CrO5)
    (A)    +5    (B)    +10
    (C)    +8    (D)    +6

Sol.       (D). 
                        Butterfly Structure
    x + 1 (–2) + 4 (–1) = 0
    x = +6

3.    Which of the following process is used to remove temporary as well as permanent hardness in water?
    (A)    Boiling the water with a calculated quantity of Na2CO3 solution and then with HCl
    (B) Treating the water with a Ca(OH)2 solution and then with HCl
    (C)    Boiling the water with carbon
    (D)    Boiling the water with anhydrous CaCl2

Sol.    (A).

4.    1.578 g Ba(OH)2.xH2O neutralizes 40 ml of an   solution. The value of x is 
    (Ba = 137.4)
    (A)    3    (B)    6    
    (C)    4    (D)    8
Sol.    (D). meq.  of Ba(OH)2.xH2O = meq.  of HNO3
      

5.    Find the ratio of number of molecules contained in 1 gm of NH3 and 1 gm N2
    (A) 20: 17    (B) 28: 17
    (C) 17: 28    (D) 14: 17

Sol.     (B).    Ratio of moles  
6.    What is the relation between volume strength and normality of H2O2 solution? 
    (A) Volume strength = 5.6 ´ normality     (B) normality = 5.2 ´ volume strength 
    (C) Volume strength = 1.78 ´ normality     (D) normality = 2.8 ´ volumes strength 

Sol.     (A).     

7.    The weight of Na2CO3 required to completely neutralize 45.6 ml of 0.235 N H2SO4 acid will be 
    (A) 0.47 g     (B) 0.57 g
    (C) 0.67 g    (D) 0.77 g

Sol.    (B).     meq.  of Na2CO3 = meq.  of H2SO4
                  0.57 gm (approx)

8.    20 ml solution containing NaOH and Na2CO3 required 32.5 ml 0.2 N H2SO4 for the end point using phenolphthalein as indicator. In another titration 20 ml solution of the mixture required 52.5 ml 0.2 N H2SO4 for the endpoint using MeOH as indicator. Hence, molarity of solution in respect of Na2CO3 was 
    (A) 01.     (B) 0.2
    (C) 0.05     (D) None of these 

Sol.    (B). In first case using Phenolphthalein,
        meq. of NaOH + meq. of Na2CO3 = meq. of H2SO4
             n=1       …(1)
    In second case using Methyl orange,
        meq. of NaOH + meq. of Na2CO3 = meq. of H2SO4
             n=2       …(2)
    From (1) and (2) we get, 

9.  A 10.0 g samples of a mixture of calcium chloride and sodium chloride is treated with Na2CO3 to precipitate the calcium carbonate. This CaCO3 is heated to convert all the calcium to CaO and the final mass of CaO is 1.62 gms. The % by mass of CaCl2 in the original mixture is
    (A) 15.2%    (B)    32.7%
    (C)    21.8%    (D)    11.07%

Sol.  (B). CaCl2 + Na2CO3 ⟶CaCO3 + 2NaCl
                       113                           100
            CaCO3  CaO + CO2
               100                 56
       56 gm CaO Formed by = 100 g CaCO3
      1.62 gm will formed by  CaCO3
      100 gm of CaCO3 is formed by = 113 g CaCl2
          will be formed by   = 3.27 gm
      10.0 gm contains = 3.27 g CaCl2
      1 gm contains  
      100 gm contains  of CaCl2

10.  1g of Ca was burnt in excess of O2 and the oxide was dissolved in water to make up one litre solution. The normality of solution is 
    (A) 0.04     (B) 0.4
    (C) 0.05    (D) 0.5

Sol.  (C). 2Ca + O2 ⟶2CaO
                    80          112
     CaO + H2O ⟶ Ca(OH)2
              56          74
    80 gm gives = 112 gm CaO
    1.0 gm gives  
    56 gm CaO gives = 74 g Ca(OH)2

  

ASSIGNMENT PROBLEMS

1.    Simplest formula of the compound containing 60 % of element A (At. wt.10) and 40% of element B (At.wt.20) is 
    (A) A3B            (B) A2B3
    (C) A3B2    (D) AB2

2.    The molality of a H2SO4 solution is 9. The weight of the solute in 1 kg H2SO4 solution is
    (A)    900.0 g    (B)    468.65 g
    (C)    882.0 g    (D)    9.0 g

3.    An aqueous solution of 6.3 g oxalic acid dihydrate is made upto 250 ml. The volume of 0.1 N NaOH required to completely neutralize 10 ml of this solution is
    (A)    40 ml    (B)    20 ml
    (C)    10 ml    (D)    4 ml
4.    100 cc of 0.3 (N) HCl solution were mixed with 200 cc of 0.6 (N) H2SO4 solution. What is the normality of H2SO4 in the final solution?
    (A) 0.4    (B) 0.5
    (C) 0.9    (D) 0.6 

5.    The eq. wt. of iodine in I2 + 2S2O2-3 ⟶ 2I– + S4O2-6  is equal to its 
    (A)     mol.wt.    (B) mol.wt./2
    (C) mol.wt./4    (D) none of these 

6.    The normality of 100 ml of '20 vol' H2O2 solution is 
    (A) 20/5.6 N    (B) 20 x 5.6 N
    (C) 5.6/20 N    (D) 5.6 N

7.    1 litre of 18 molar H2SO4 has been diluted to 100 litres. The normality of the resulting solution is 
    (A)    0.09 N    (B) 0.18 N
    (C) 1800 N    (D) 0.36 N

8.    0.311 gram sample of crude NaOH required 46.1 ml of 0.122 N H2SO4 for complete neutralisation, the percentage of NaOH in the sample is
    (A)    72.3    (B)    7.23
    (C)    36.15    (D)    23.7

9.    If 8.3 ml of a sample of H2SO4 (18 M) is diluted by 991.7 ml of water. Then approximate normality of the resulting solution is
    (A)    0.4    (B)    0.2
    (C)    0.1    (D)    0.3

10.    In the reaction 
    Cl2 + OH ⟶ Cl + ClO3– + H2O
    (A)    Chlorine is oxidised                                    (B)    Chlorine is reduced 
    (C)    Chlorine is reduced as well as oxidized     (D)    Chlorine is neither reduced nor oxidised 

11.    A self contained breathing apparatus uses KO2, to convert the carbondioxide and water in exhaled air into oxygen, as shown by the equation.
    4KO2(s) + 2H2O(g) + 4CO2(g) ⟶ 4KHCO3(s) + 3O2(g)
    How many molecules of oxygen gas will be produced from 0.0468 g of carbondioxide that is exhaled in a typical breath?
    (A)    4.8 x 1020    (B)    6.4 x 1020
    (C)    8.5 x 1020    (D)    1.9 x 1021

12.    The weight of MnO2 (87%) pure that must be taken so that on treatment with conc. HCl, the liberated Cl2 will liberate 12.7 g of I2 from KI.
    (A)    10 g    (B)    12 g
    (C)    13 g    (D)    20 g
13.    An aqueous solution of 6.3 g oxalic acid dihdyrate is made upto 250 ml. The volume of 0.1 NaOH required to completely neutralise 10 ml of this solution is
    (A)    40 ml    (B)    20 ml
    (C)    10 ml    (D)    4 ml


14.    A person needs 1.71 g of cane sugar (C12H22O11) to sweeten his tea. What would be the number of carbon atoms consumed through sugar in his tea?
    (A)    3.6x1022           (B)7.2x1021
    (C)    5x1021            (D)6.6x1022

15.    In a reaction, 4 moles of electrons are transferred to 1 mole of HNO3 .The possible product obtained due to reduction is
    (A)    0.5 mole of     (B)    0.5 mole of  
    (C)    1 mole of     (D)    1 mole of  
 

ANSWERS TO ASSIGNMENT PROBLEMS

                                    1.          C                  2.         B                    3.       A
                                    4.          A                   5.        B                   6.       A
                                    7.          D                  8.         A                   9.        D
                                  10.          C                 11.        A                 12.       A
                                  13.          A                 14.        A                 15.       B

 

Frequently Asked Questions

The most fundamental concept in chemistry is understanding the structure and properties of atoms. Chemistry begins with atoms, the smallest units of matter that retain the properties of an element. Atoms consist of protons, neutrons, and electrons. Protons and neutrons form the atomic nucleus, whereas electrons orbit the nucleus in shells or orbitals. Understanding how these subatomic particles interact lays the foundation for all chemical reactions and bonding phenomena.

Atoms combine through chemical bonds—ionic, covalent, or metallic—to form molecules and compounds. Grasping this fundamental concept is crucial because every chemical reaction involves the rearrangement of these atoms to create new substances. A practical example is the formation of water (H₂O), where hydrogen and oxygen atoms form covalent bonds by sharing electrons. Mastering atomic structure helps you comprehend more complex topics such as stoichiometry, chemical kinetics, and thermodynamics.

Actionable step: To solidify your understanding, start by memorizing the periodic table's first 20 elements, noting their atomic numbers, masses, and typical bonding behaviors. This foundational knowledge will significantly ease your progression into more complex chemistry topics.

Starting your study effectively involves initially familiarizing yourself with the fundamental terms and definitions presented at the beginning of the chapter. Key terms such as atoms, molecules, mole concept, atomic mass, molecular mass, and Avogadro’s number are foundational. Grasping these concepts thoroughly provides a clear pathway for understanding more advanced topics like stoichiometry and chemical calculations.

Begin by carefully reading the textbook explanations and taking concise notes, emphasizing definitions and illustrative examples. Practice numericals related to the mole concept and atomic masses, as solving problems actively reinforces theoretical concepts. Additionally, reviewing video lectures or visual aids online can enhance your understanding and retention.

Actionable step: After initial reading and notes, attempt simple numerical problems related to the mole concept and molecular calculations. Solving at least 10 problems daily can significantly boost your comfort and proficiency with basic chemistry concepts.

Important questions from Chapter 1 typically cover atomic mass and molecular mass calculations, mole concepts, molar volume, empirical and molecular formula calculations, and stoichiometric calculations involving chemical equations. Questions also frequently include distinguishing between accuracy and precision and understanding significant figures and their application in measurements.

Practically, you should be comfortable answering questions like calculating molecular masses of compounds (for example, glucose C₆H₁₂O₆), determining the number of moles in a given mass, and applying the law of conservation of mass in balancing chemical equations. Questions involving the conversion of grams to moles and vice versa, as well as those related to Avogadro’s number, are essential and frequently examined.

Actionable step: Regularly practicing past year’s question papers and solving exemplar problems provided by NCERT or other reliable resources can enhance your confidence. Maintain a separate notebook for frequently asked and challenging questions, reviewing them periodically to ensure retention and readiness.

Handling numerical problems effectively requires a systematic approach. First, clearly understand what the problem is asking. Identify the given data and what you need to calculate. Familiarize yourself with the formulas and concepts applicable to the specific numerical question such as the mole concept, molar mass, or Avogadro’s number.

Start by writing down all the known quantities clearly, followed by choosing the relevant chemical formula or conversion factor. For instance, if the problem involves finding the number of moles, use the formula: moles = given mass/molar mass. Carefully substitute the given values, performing each step methodically to avoid calculation errors. Cross-checking your final answer with units can also ensure accuracy and minimize mistakes.

Actionable step: Practice solving numerical problems daily by starting with easier problems and progressively moving to more challenging questions. Also, try to solve similar types of problems repeatedly to build familiarity and speed.

Various resources are essential for thoroughly understanding chemistry basics. Firstly, textbooks such as NCERT Chemistry for Class 11 are foundational and aligned with curriculum standards. Additionally, online video tutorials from platforms like YouTube or dedicated educational websites can significantly clarify difficult concepts through visual explanations.

Engaging with interactive learning platforms offering quizzes, MCQs, and flashcards can enhance active learning. These tools allow learners to test their knowledge, track progress, and identify areas needing improvement. For numerical practice, referring to dedicated numerical problem-solving books and past years' exam papers helps in building proficiency.

Actionable step: Curate a balanced learning plan integrating textbooks, video tutorials, interactive quizzes, and regular numerical practice. Dedicate at least 30 minutes daily to interactive tools and videos, complementing your textbook study.

Students often find topics such as mole concepts, stoichiometry, and chemical calculations challenging. Difficulties primarily arise due to inadequate understanding of underlying principles and insufficient practice of numerical problems. To overcome these challenges, one must first ensure conceptual clarity through focused study sessions, leveraging multiple resources like textbooks, video lectures, and visual aids.

Regular practice of numerical problems is crucial. Solve different types of problems repeatedly, ensuring thorough understanding rather than rote memorization. Discussing difficult questions with peers or teachers can also provide new insights and clarification. Additionally, regularly reviewing difficult concepts and summarizing your notes can help consolidate your learning and ensure long-term retention.

Actionable step: Establish a regular revision schedule, targeting your weak areas weekly. Engage in peer discussions or group studies to gain different perspectives on challenging topics, ensuring steady progress and confidence in handling difficult concepts.

“Some Basic Concepts of Chemistry” is the typical starting chapter in class 11 chemistry texts and serves as the cornerstone for all future study in the field. This chapter introduces the definition of chemistry, exploring what matter is and how it is classified into elements, compounds, and mixtures. It covers foundational laws such as the law of conservation of mass, law of definite proportions, and law of multiple proportions, which govern how substances combine and react.

The chapter also emphasizes the significance of accurate measurement and observation via topics like atomic mass, molecular mass, empirical and molecular formulas, the mole concept, and stoichiometry. These are vital tools needed for calculating reactant and product quantities in chemical reactions. The limiting reagent, percentage composition, and different units for measuring solution concentration are included to give students a practical grasp of quantitative problem-solving in chemistry. These concepts lay the groundwork for understanding the more advanced principles discussed in later chapters and are crucial for building strong problem-solving skills for academic exams and laboratory work

Questions from "Some Basic Concepts of Chemistry" regularly appear in the NEET (National Eligibility cum Entrance Test) exam since they are foundational to understanding other chemical principles. Typically, students can expect around 2–3 questions directly related to basic concepts, including mole concept, stoichiometry, atomic and molecular mass calculations, laws of chemical combinations, and empirical or molecular formula determinations. These questions often involve numerical problem-solving and concept-based queries.

Since NEET is highly competitive, mastering these basics is crucial. Questions may involve calculating molar mass, interpreting the law of conservation of mass in given reactions, identifying limiting reagents, and working with concentration units. Practicing these types of questions not only solidifies students' understanding of chemistry but also strengthens their chance of earning higher scores in the exam. Regular practice with these topics, alongside mock tests and sample papers, is strongly recommended for NEET aspirants

Chemistry branches into several specialized fields, often categorized into five main traditional areas and two emerging/interdisciplinary ones:

  • Organic Chemistry: Focuses on carbon compounds and their reactions.

  • Inorganic Chemistry: Deals with inorganic substances, such as metals, minerals, and non-metals.

  • Physical Chemistry: Explores the physical principles underlying chemical phenomena, including thermodynamics and kinetics.

  • Analytical Chemistry: Involves techniques to identify and quantify chemical substances.

  • Biochemistry: Examines chemical processes within living organisms.

  • Environmental Chemistry: Studies the chemical processes in natural environments.

  • Industrial or Applied Chemistry: Concerned with optimizing chemical processes for industrial applications.

These branches showcase the diversity and breadth of the field, connecting everyday life to technological and scientific advances

Interest in chemistry can be subjective, but some topics consistently engage learners due to their real-world impact and intellectual challenge:

  • Nanotechnology and the chemistry of nanomaterials

  • Environmental chemistry and pollution control

  • Chemistry of food and flavor

  • Forensics and chemical detection

  • Medicinal chemistry and drug discovery

  • Green chemistry and sustainable practices

  • Chemical reactions in art and preservation

These topics draw global attention because they combine scientific curiosity with tangible benefits for society, the environment, health, and technology.